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Particle removal from wafer surfaces can be accomplished by 
irradiation of cleaning fluid by sound waves in the MHz frequency 
range. Unfortunately, unless proper cleaning conditions are chosen, 
megasonic irradiation may also result in damage to fragile wafer 
features. Here, we demonstrate a strong effect of dissolved CO2
levels on the reduction of wafer damage during megasonic 
cleaning. Test structures with L/S patterns were irradiated with 
0.93 MHz sound waves at varying power densities and dissolved 
CO2 levels, in a single wafer spin cleaning tool, MegPie®. 
Dissolution of increasing amounts of CO2 in air saturated DI water 
caused a significant decrease in the number of breakages to line 
structures and also decreased the lengths of the line breakages, at 
all power densities up to 2.94 W/cm2. This ability of dissolved CO2
to protect against feature damage correlates well with its ability to 
suppress sonoluminescence in sound irradiated DI water. 

Introduction 

Megasonic cleaning is routinely employed in the semiconductor industry for removal of 
contaminant particles and residues from wafer surface. With the progression of 
technology nodes to smaller sizes, megasonic cleaning is faced with the challenge of 
maintaining high cleaning efficiency without inducing damage to small features (~100 
nm and less).  Judicious choice of cleaning chemicals and control of dissolved gases has 
been proposed to minimize wafer damage (1).  

Sonoluminescence (SL), the phenomenon of release of light when liquid is irradiated 
by sound waves of sufficient intensity, is a sensitive indicator of cavitation events (2).  It 
is widely believed that acoustic cavitation is responsible for both wafer cleaning and 
damage. Intensity of SL correlates with intensity of cavitation, mostly transient cavitation 
that is believed to cause damage to wafer features. Therefore, control of transient 
cavitation has potential application in controlling damage.  

The authors of this paper have previously reported the strong ability of dissolved CO2
to quench SL generation in DI water (3). It was shown that increasing amounts of 
dissolved CO2 progressively decreased SL and ~150 ppm dissolved CO2 was found to be 
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A blanket of CO2 on top of the spinning wafer was necessary to reach a high 
concentration of 1035 ppm of dissolved CO2. Concentrations of CO2 reported in this 
study were calculated based on the pH of the exit stream from the MegPie® during the 2 
min period of exposure to megasonic irradiation. 

Damages resulting from the exposure to megasonic energy were examined at low 
resolutions using an optical microscope and at high resolutions using a field emission 
scanning electron microscope (Hitachi S-4800, FESEM) (Fig. 3 and Fig. 4). For 
structures-I, width of the line features were small (~36 nm) and could not be resolved in 
an optical microscope. At a magnification of 200X, a large number of damage sites 
covering a representative area (0.3 mm x 0.4 mm) of the wafer, could be adequately 
resolved. These damage sites appeared as small dark spots (Fig. 3). Images for ten non-
overlapping and contiguous regions of damages, covering an area of 1.2 mm2 and 
occurring at a given power density, were collected and counted using the particle analysis 
tool in ImageJ (version 1.43u). For test structures-II, width of the lines were thick enough 
(~67 nm) to resolve in an optical microscope. A representative area of 0.08 mm2

constituting ten pairs of thin and thick lines was examined and the damage sites were 
counted manually. Total number of damages (line breakages) for both structures were 
scaled to 1 mm2 area of the wafer and plotted as a function of power density (Fig 5). 

Results and Discussion 

Fig. 3 shows optical microscope and FESEM images of line breakages occurring in 
test structures-I resulting from megasonic irradiation at a power density 2.5 W/cm2. Fig. 
3a and Fig. 3b are the optical microscope images of damages resulting in air saturated DI 
water and CO2-saturated DI water (~1035 ppm CO2), respectively. Comparison of Figs. 
3a and 3b readily reveal the effectiveness of suppression of damage that is imparted by 
dissolved CO2. Figs. 3c, 3d and 3e show FESEM images of damage resulting in DI water 
containing 0.5 (saturated with air), 412 and 1035 ppm of dissolved CO2, respectively. As 
seen in these images, the number density of damages decreases with increasing dissolved 
CO2 content in DI water. In addition, the size of line breakages occurring in air-saturated 
DI water (Fig. 3c) was seen to be larger than in CO2 added DI water (Figs. 3d and 3e). 
The average size of line breakages occurring in air-saturated DI water and CO2 added DI 
water was found to be ~1150 nm and ~770 nm, respectively. The average size of line 
breakages did not change significantly with change in power density. Fig. 3f presents a 
high magnification view of a typical line breakage occurring in either air-saturated or 
CO2 added DI water. As seen in the figure, breakage occurs within the line-feature, forms 
a U-shape and leaves residual material sticking on the surface. These morphological 
features of line breakages remained largely unchanged with change in power density or 
nature of dissolved gas.  

Fig. 4 shows FESEM images of line breakages occurring in structures-II in either air-
saturated DI water (Fig. 4a) or CO2-saturated DI water (Fig. 4b), at a power density 1.5 
W/cm2. As seen in these figures, damage occurred only to the thin lines close to the base 
of the line features, rather than inside the body of the line features; this is in contrast to 
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collapse. However, our results do not rule out the possibility that CO2 may also suppress 
stable cavitation that is thought to be primarily responsible for damage-free cleaning. 
Cleaning studies on the effect of dissolved CO2 on contaminant removal efficiency in 
sound irradiated DI water would be necessary to further understand the mechanism of 
protection imparted by dissolved CO2. In addition to cavitation, pH is also an important 
parameter affecting particle removal from wafer surfaces. Since CO2 dissolution 
decreases pH, measurements of the effect of dissolved CO2 levels on cavitation-assisted 
particle removal would require that pH be maintained constant at varying levels of 
dissolved CO2. Methods to generate varying CO2 levels, while holding pH at a constant 
value of choice, have been demonstrated by us, previously (5). 

Conclusions 

The number density of line breakages increases with acoustic power density and 
decreases with increasing levels of dissolved CO2 content in DI water. The average size 
of line breakages also decreases upon addition of CO2 in DI water. The nature of 
breakage was found to depend on the material composition of the line features but not the 
nature of dissolved gas. Megasonic irradiation of DI water caused damage to line features 
of thicknesses 67 and 35 nm, but not to lines of thickness 113 nm. In structures-II, 
numerous damages were observed on the thin line (~67 nm) but no damages were seen 
on the thick line (~113 nm) at any power density studied, suggesting that these line 
structures become highly susceptible to megasonic damage below a critical thickness. 
Taken together, these results confirm a strong effect of dissolved CO2 in suppressing 
damage to wafers during their megasonic processing under varying conditions of power 
density and material composition of wafer features. 
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